countably incomplete ultrafilter - tradução para russo
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:     

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

countably incomplete ultrafilter - tradução para russo

IN SET THEORY, GIVEN A COLLECTION OF DENSE OPEN SUBSETS OF A POSET, A FILTER THAT MEETS ALL SETS IN THAT COLLECTION
Generic ultrafilter

countably incomplete ultrafilter      

математика

счётно неполный ультрафильтр

countably incomplete ultrafilter      
счетно неполный ультрафильтр
principal ultrafilter         
MAXIMAL PROPER FILTER
Ultrafilter lemma; Ultrafilter Lemma; Ultrafilter principle; Rudin-Keisler ordering; Rudin–Keisler ordering; Rudin–Keisler order; Rudin-Keisler order; Principal ultrafilter; Ramsey ultrafilter; Selective ultrafilter; Rudin–Keisler equivalent; Rudin-Keisler equivalent; The ultrafilter lemma; Ultra prefilter; Free ultrafilter (set theory); Ultrafilter monad

математика

главный ультрафильтр

Definição

countably many

Wikipédia

Generic filter

In the mathematical field of set theory, a generic filter is a kind of object used in the theory of forcing, a technique used for many purposes, but especially to establish the independence of certain propositions from certain formal theories, such as ZFC. For example, Paul Cohen used forcing to establish that ZFC, if consistent, cannot prove the continuum hypothesis, which states that there are exactly aleph-one real numbers. In the contemporary re-interpretation of Cohen's proof, it proceeds by constructing a generic filter that codes more than 1 {\displaystyle \aleph _{1}} reals, without changing the value of 1 {\displaystyle \aleph _{1}} .

Formally, let P be a partially ordered set, and let F be a filter on P; that is, F is a subset of P such that:

  1. F is nonempty
  2. If pq ∈ P and p ≤ q and p is an element of F, then q is an element of F (F is closed upward)
  3. If p and q are elements of F, then there is an element r of F such that r ≤ p and r ≤ q (F is downward directed)

Now if D is a collection of dense open subsets of P, in the topology whose basic open sets are all sets of the form {q | q ≤ p} for particular p in P, then F is said to be D-generic if F meets all sets in D; that is,

F E , {\displaystyle F\cap E\neq \varnothing ,\,} for all E ∈ D.

Similarly, if M is a transitive model of ZFC (or some sufficient fragment thereof), with P an element of M, then F is said to be M-generic, or sometimes generic over M, if F meets all dense open subsets of P that are elements of M.

Como se diz countably incomplete ultrafilter em Russo? Tradução de &#39countably incomplete ultrafil